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Abstract
This paper is concerned with the ergodic subspaces of the state spaces of isolated
quantum systems. We prove a new ergodic theorem for closed quantum systems
which shows that the equilibrium state of the system takes the form of a grand
canonical density matrix involving a complete commuting set of observables
including the Hamiltonian. The result obtained, which is derived for a generic
finite-dimensional quantum system, shows that the equilibrium state arising
from unitary evolution is always expressible in the canonical form, without the
consideration of a system-bath decomposition.

PACS numbers: 05.30.−d, 05.30.Ch, 45.20.Jj

Given the Hamiltonian Ĥ and the initial state |ψ0〉 of an isolated quantum system, what is the
dynamic average

〈〈Ô〉〉 = lim
t→∞

1

t

∫ t

0
〈ψs |Ô|ψs〉 ds (1)

of an observable Ô when the state |ψt 〉 = e−iĤ t |ψ0〉 of the system evolves unitarily? Is there
an equilibrium density matrix ρ̂, with a thermodynamic characterization, such that the average
is given by 〈〈Ô〉〉 = tr(ρ̂Ô) ?

In the case of a classical system, if the Hamiltonian evolution is ergodic, then the theorem
of Koopman, von Neumann and Birkhoff shows that the dynamic average can be replaced by a
statistical average over a subspace of the phase space determined by the relevant conservation
laws [1]. If the system consists of a large number of interacting particles, then the dynamic
average is intractable, whereas the statistical average in many cases can be calculated.

In the case of quantum systems, while the equilibrium properties of small subsystems
of large systems have been studied extensively [2–11], less attention has been paid to the
equilibrium states arising as a consequence of the unitary evolution of closed systems. The
purpose of this paper is to investigate such systems and to derive rigorous results concerning
(a) the dynamic averages of observables, and (b) the associated equilibrium states.

We consider an isolated quantum system based on a Hilbert space of dimension n+1, with a
generic, nondegenerate Hamiltonian Ĥ (the degenerate case will be considered later). We write
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{Ei}i=0,1,...,n for the energy eigenvalues, and ωij = Ei −Ej for the eigenvalue differences. The
normalized energy eigenstates will be denoted {|Ei〉}i=0,1,...,n, with the associated projection
operators {�̂i}i=0,1,...,n. We write |ψ0〉 for the initial state, and {|ψt 〉}0�t<∞ for its unitary
evolution under the influence of Ĥ . With these definitions at hand, the main result can be
expressed as follows:

Quantum ergodic theorem. The dynamic average of an observable Ô is given by 〈〈Ô〉〉 =
tr(ρ̂Ô), where

ρ̂ = 1

Z(β, {µi}) exp

(
−βĤ −

n∑
i=2

µiF̂ i

)
, (2)

and Z(β, {µi}) = tr exp
(−βĤ − ∑n

i=2 µiF̂ i

)
. Here Ĥ together with {F̂ i}i=2,...,n constitute

a complete set of commuting observables. The effective inverse temperature β and chemical
potentials {µi}i=2,...,n are given by the relations

β = ∂S

∂E
, and µi = ∂S

∂Fi

, (3)

where E = tr(ρ̂Ĥ ), and Fi = tr(ρ̂F̂ i). The entropy S = −tr(ρ̂ ln ρ̂) is given by

S = −
n∑

i=0

pi ln pi, (4)

with pi = |〈ψ0|Ei〉|2.

The appearance of the grand canonical density matrix (2) is surprising, since this structure
normally arises with the consideration of the equilibrium thermodynamics of a small system
immersed in a thermal bath. Indeed, the canonical form ρ̂ = exp(−βĤ )/Z(β) is known to
appear in the case of a system in a thermal bath for an overwhelming majority of wavefunctions
of the total system [10, 11]. Equation (2) is a stronger result, valid in the case of a closed
system, involving no approximations and no invocation of the thermodynamic limit.

To determine the equilibrium states of a closed quantum system we need to identify
the subspaces of the quantum state space over which a generic time evolution will exhibit
ergodicity. The idea is that in general there are n conserved quantities arising in connection
with unitary evolution in a Hilbert space of dimension n+1. These are given by the expectation
values of n linearly independent observables that commute with the Hamiltonian, one of these
being the Hamiltonian itself. Writing E for the expectation of Ĥ , we can then write {Fi}i=2,...,n

for the expectation values of the other members of the commuting set, which we denote by
{F̂ i}i=2,...,n. By fixing the expectation values of these conserved quantities we are left with a
set of n relative-phase degrees of freedom for the state vector that spans the ergodic subspace
of the state space associated with the given initial state.

We shall show that the equilibrium state corresponds to a uniform distribution over the
toroidal subspace of the quantum state space spanned by the relative phases. The equilibrium
distribution is characterized, in particular, by a density-of-states function �, which acts as a
measure of the size of the toroidal subspace. The associated density matrix ρ̂ is given by the
von Neumann–Lüders state; that is to say,

ρ̂ =
n∑

i=0

pi�̂i, (5)

where pi = |〈ψ0|Ei〉|2. This might be surprising, since such a state arises most naturally in
the context of measurement theory, where it describes the state of a system after an energy
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measurement has been performed. The result is consistent with the fact that the time average
of the dynamics of the density matrix under unitary evolution is given by the von Neumann–
Lüders state. It follows that the dynamic average (1) of an arbitrary observable Ô is given by
tr(ρ̂Ô).

To identify the ergodic subspaces of the quantum state space, we first consider the example
of a two-level system, with n = 1. The one-parameter family of states generated by unitary
evolution can be written in the form

|ψt 〉 = cos 1
2θ |E1〉 + sin 1

2θ ei(φ+ω10t)|E0〉, (6)

where 0 � θ � π and 0 � φ < 2π . The pure state space has the geometry of a sphere, and
unitary evolution gives rise to a rigid rotation of the sphere around the axis determined by the
two energy eigenstates. Given the initial state |ψ0〉, the dynamical trajectory is the latitudinal
circle on which |ψ0〉 lies. The circle is fixed by setting the initial energy E of the system,
which is the only conserved quantity. Every point on the latitudinal circle is traversed by the
dynamical trajectory, which makes this circle the ergodic subspace of the state space. The
dynamic average of an observable can thus be replaced by the ensemble average with respect
to a uniform distribution over the circle.

To calculate the associated density of states we compute the weighted volume in the pure
state manifold occupied by the states having the given property. In general, if we have a set of
conserved quantities {Gj }j=1,...,m given by Gj = 〈ψt |Ĝj |ψt 〉, then the associated density of
states is

�({Gj }) =
∫ m∏

j=1

δ(〈ψ |Ĝj |ψ〉 − Gj) dV, (7)

where the integration is over the space of pure states and dV is the associated volume element.
The corresponding construction for classical systems is considered in [12], where �({Gj }) is
referred to as a ‘substructure function’. In the case of a two-level system the ergodic circle
is chosen by fixing the expectation of the Hamiltonian: E = 〈Ĥ 〉. In terms of the spherical
coordinates (θ, φ) of (6), the constraint can be written in the form (E1−E0) cos2 1

2θ = E−E0.
We thus integrate δ

(
cos2 1

2θ − (E − E0)/(E1 − E0)
)

over the pure state manifold. Since the
volume element is dV = 1

4 sin θ dθ dφ, the resulting density of states is

�(E) = 1{E0<E<E1}
π

E1 − E0
, (8)

where 1{A} denotes the indicator function: 1{A} = 1 if A is true and 1{A} = 0 otherwise.
We proceed to calculate the density of states for n = 2. In this case there are two conserved

quantities: E = 〈Ĥ 〉 and F = 〈F̂ 〉, where the observable F̂ commutes with Ĥ , but is not of the
form aĤ + b1̂. The calculation simplifies if we use an equivalent alternative set of constraints
obtained by fixing the expectation values of two of the energy projectors, say, p0 = 〈�̂0〉 and
p1 = 〈�̂1〉. It follows from the resolution of the identity that p2 = 〈�̂2〉 = 1 − p0 − p1. The
unitary trajectory can be written in the form

|ψt 〉 = sin 1
2θ1 cos 1

2θ2|E2〉 + sin 1
2θ1 sin 1

2θ2 ei(φ1+ω21t)|E1〉 + cos 1
2θ1 ei(φ2+ω20t)|E0〉, (9)

and the two constants of motion are given by p0 = cos2 1
2θ1 and p1 = sin2 1

2θ1 sin2 1
2θ2,

which fix the variables θ1, θ2. Therefore, under a generic unitary evolution the ergodic
subspace of the quantum state space is the two-torus T 2 spanned by φ1, φ2. The density
of states is obtained by integrating δ

(
cos2 1

2θ1 − p0
)
δ
(

sin2 1
2θ1 sin2 1

2θ2 − p1
)

over the
pure state manifold, with the appropriate volume element, which in this case is dV =
1

32 sin θ1(1 − cos θ1) sin θ2 dθ1 dθ2 dφ1 dφ2. Performing the relevant integration we find that
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�(p0, p1) = π2 in the triangular region {0 < p0, p1 < 1} ∩ {0 < p0 + p1 < 1}, and vanishes
otherwise.

In the case of a general (n + 1)-level system there are n conserved quantities associated
with unitary dynamics. It follows that under a generic time evolution for which the eigenvalue
differences {ωij } are incommensurate the typical ergodic subspace of the quantum state space
is given by an n-torus T n. To calculate the density of states �(p0, . . . , pn−1) we fix the
constraints 〈�̂i〉 = pi for i = 0, . . . , n − 1, express these in terms of the coordinates (θi, φi),
and perform the constrained volume integral over the pure state manifold by using the volume
element

dV = 2−n

n∏
i=1

cos
1

2
θi sin2i−1 1

2
θi dθi dφi. (10)

The result is

�(p0, . . . , pn−1) = πn (11)

in the hyper-triangular region {0 < p0, . . . , pn−1 < 1} ∩ {0 < p0 + · · · + pn−1 < 1}, and
�(p0, . . . , pn−1) = 0 otherwise. We see that irrespective of the Hilbert space dimensionality
the density of states is constant in the hyper-triangular region, and is independent of the energy
E and the conserved quantities {Fi}i=2,...,n.

The analysis above leads to the following observation. Since for each n we have identified
the ergodic subspaces of the state space, we are able to apply Birkhoff’s theorem to conclude
that the dynamic average of an observable can be replaced by the statistical average of the
observable with respect to an equilibrium state given by a uniform distribution over the toroidal
subspace T n.

To compute the expectation of an observable Ô we determine the density matrix associated
with the equilibrium distribution over the state space. We remark in this connection that the
density matrix associated with a probability density function on the pure state manifold is the
expectation of the pure-state projection operator with respect to that density function. Now in
the energy basis a pure-state projector can be expressed in the form

|ψ〉〈ψ | =
∑
i,j

√
pipj ei(φi−φj )|Ei〉〈Ej |. (12)

Thus, the diagonal elements {pi} of the pure-state projector are real, whereas the off-diagonal
elements contain phase factors. The equilibrium distribution has fixed values for the {pi} and
a uniform distribution over the phase variables. It follows that if we take the average of the
projector |ψ〉〈ψ | over the phases, the off-diagonal elements drop out and we are left with the
von Neumann–Lüders state (5).

The appearance of the von Neumann–Lüders density matrix as the equilibrium state is
consistent with the fact that the dynamic average of the density matrix is itself given by the
von Neumann–Lüders state. This can be seen as follows:

〈ρ̂〉 = lim
t→∞

1

t

∑
i,j

∫ t

0
�̂i e−iĤ s ρ̂0 eiĤ s�̂j ds

= lim
t→∞

1

t

∑
i,j

�̂i ρ̂0�̂j

∫ t

0
e−iωij s ds

=
∑

i

�̂i ρ̂0�̂i + lim
t→∞

∑
i �=j

�̂i ρ̂0�̂j

1 − e−iωij t

iωij t

=
∑

i

�̂i ρ̂0�̂i =
∑

i

pi�̂i . (13)
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In particular, we see that the timescale involved for the averaging to become effective is
determined by the energy differences. We thus conclude that the dynamic average of an
observable Ô is given by tr(ρ̂Ô), where ρ̂ is given by (5).

This representation of the density matrix, however, does not make the thermodynamic
properties of the equilibrium state immediately apparent. We shall demonstrate, nonetheless,
that in association with the conserved quantities (E, {Fi}) there is a corresponding system of
conjugate variables (β, {µi}) that can be given a consistent thermodynamic interpretation. In
the case of the energy the conjugate variable has the interpretation of the inverse temperature.
For the other observables the associated conjugate variables can be interpreted as chemical
potentials. This suggests that the equilibrium state arising from unitarity and ergodicity might
be of a grand canonical type. The conjugate variables are defined as follows. Writing (5) for the
density matrix associated with the toroidal subspace characterized by the conserved quantities
(E, {Fi}) we have trρ̂ = 1, tr(ρ̂Ĥ ) = E, and tr(ρ̂F̂ k) = Fk . Let us define a family of n + 1
operators {Ĝ}i=0,1,...,n by setting Ĝ0 = 1̂, Ĝ1 = Ĥ , and {Ĝi}i=2,...,n = {F̂ i}i=2,...,n, writing
{G}i=0,1,...,n for the corresponding expectation values with respect to ρ̂, so G0 = 1,G1 = E,
and {Gi}i=2,...,n = {Fi}i=2,...,n. In other words, tr(ρ̂Ĝi) = Gi for i = 0, 1, . . . , n. It follows
from (5) that

n∑
i=0

pi tr(�̂iĜj ) = Gj . (14)

Thus, writing gij = tr(�̂iĜj ) and defining hjk by
∑n

j=0 gijhjk = δik , we see that

pk =
n∑

j=0

Gjhjk, (15)

and therefore that

ρ̂ =
n∑

j,k=0

Gjhjk�̂k. (16)

To verify that hjk exists, we observe that if it did not, then there would exist a nonzero vector
ξi such that

∑n
j=0 gij ξj = 0; but that would imply tr

(
�̂i

∑n
j=0 Ĝj ξj

) = 0 for all i, and hence∑n
j=0 Ĝj ξj = 0, contrary to the assumption that the Ĝj are linearly independent.

Formula (16) gives ρ̂ as a function of E and {Fi}. Therefore, writing S = −tr(ρ̂ ln ρ̂)

for the entropy, we obtain an expression for S as a function of E and {Fi}. The associated
conjugate variables are then defined by the thermodynamic relation

dS = β dE +
n∑

k=2

µk dFk, (17)

where β is the effective inverse temperature and {µk} are the effective chemical potentials.
This shows, on account of the linear independence of the observables, the equivalence of
the specification of either (i) the initial state |ψ0〉 up to relative phases, (ii) the probabilities
pi = |〈ψ0|Ei〉|2, (iii) the expectation values E and {Fi}, or (iv) the conjugate variables β and
{µi}. We can therefore investigate how the equilibrium density matrix (5) can be expressed
either in terms of the extensive variables E and {Fi}, or in terms of the conjugate variables β

and {µi}.
For the various representations of the density matrix we consider first the example of the

two-level system. In this case we solve the relations p0 + p1 = 1 and p0E0 + p1E1 = E for
the diagonal elements p0, p1 of ρ̂, and obtain

ρ̂(E) =
(

E1−E
E1−E0

0

0 E−E0
E1−E0

)
. (18)
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Computing the entropy and using the relation dS = β dE we can express the inverse
temperature as a function of E. The result is

β(E) = 1

E1 − E0
ln

(
E1 − E

E − E0

)
. (19)

By inverting this relation, we then obtain

E(β) = E0 e−βE0 + E1 e−βE1

e−βE0 + e−βE1
. (20)

Expression (20) is, however, the expectation of the energy with respect to the canonical density
matrix. That is to say, (18) can be expressed in the form

ρ̂(E) = 1

Z(β)

(
e−βE0 0

0 e−βE1

)
, (21)

where Z(β) = e−βE0 + e−βE1 . The important point here is that the inverse temperature β is not
specified exogenously via the introduction of a heat bath. Rather, it is defined endogenously,
through the specification of the energy of the equilibrium state associated with the given initial
state.

Let us now turn to the proof of the quantum ergodic theorem in the general case. It follows
from (16) that the entropy is given by

S = −
n∑

k=0


 n∑

j=0

Gjhjk


 ln


 n∑

j=0

Gjhjk


 . (22)

Thus, defining γi = ∂S/∂Gi by use of this expression, we find that

γi = −
n∑

k=0

hik


ln


 n∑

j=0

Gjhjk


 + 1


 = −

n∑
k=0

hik(ln pk + 1), (23)

by (15), and hence

ln pi + 1 = −
n∑

j=0

gij γj = −
n∑

j=0

tr(�̂iĜj )γj

= −γ0 − γ1tr(�̂iĤ ) −
n∑

j=2

γj tr(�̂iF̂ j ). (24)

Setting γ1 = β and {γi}i=2,...,n = {µi}i=2,...,n, these relations are then sufficient to determine
the diagonal elements {pi}i=0,...,n of the equilibrium density matrix in terms of the intensive
variables, and we are led to the grand canonical ensemble (2) with the identification
γ0 = ln Z − 1. The effective inverse temperature, however, is not associated with an external
heat bath, but rather is intrinsic to the system, and a similar remark applies to the effective
chemical potentials. The fact that the conjugate variables are determined endogenously shows
that our result does not require an assumption of entropy maximization.

In the case of a degenerate Hamiltonian, the ergodic subspace of the state space is
contracted to a smaller torus T m ⊂ T n, where m + 1 is the number of distinct energy
eigenvalues. This follows from the fact that since some of the eigenvalue differences ωij

vanish, only m of the n relative phases for the unitary trajectory |ψt 〉 vary in time. As a
consequence, we need only to consider m−1 independent observables {F̂ i} whose eigenspaces
coincide with that of the Hamiltonian. In other words, there are only m terms, given by Ĥ

and {F̂ i}i=2,...,m, in the exponent of (2) for the grand canonical density matrix. As an example
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consider the case of a three-dimensional Hilbert space where the energy eigenvalues are given
by E0, E1 and E1. The elements of the density matrix are p0 = (E1 − E)/(E1 − E0) and
p1 = p2 = (E − E0)/2(E1 − E0). A short calculation making use of the relation dS = β dE

then shows that

E(β) = E0 e−βE0 + 2E1 e−βE1

e−βE0 + 2 e−βE1
, (25)

which is evidently the expectation of Ĥ with respect to the canonical density matrix
ρ̂ = exp(−βĤ )/tr exp(−βĤ ).

A challenging open issue is to understand the implications of the quantum ergodic theorem
for macroscopic systems. In the case of a large quantum system the energy spectrum of a
typical model Hamiltonian is highly degenerate. As a consequence, the number of independent
macro-observables Ĥ and {F̂ i} required for the exact specification of the equilibrium density
matrix is significantly reduced. For real systems, however, due to the complexity of internal
interactions one would expect the degeneracies in model Hamiltonians to split into closely
located but distinct levels. Therefore, the specification of a small number of macro-variables
will only provide an approximate description of the equilibrium state for real systems. On the
other hand, if there are large clusters of observables with the property that in the equilibrium
state defined by (2) the chemical potentials are approximately equal, then the resulting state can
be adequately characterized by a small number of macro-variables, and thus can be regarded
as effectively classical. It is interesting in this connection to contrast the results obtained
here for quantum systems with the corresponding results for strictly classical systems: while
ergodicity is generic for quantum systems, classically it is exceptional [13]. The fact that
the characterization of the equilibrium state of a quantum system is simpler, and that the
equilibrium distribution can be derived dynamically by use of an ergodicity argument might
be related to the special structures of energy surfaces in quantum phase spaces [14].
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